Product Description

Product Description

Aluminium Filtration Fabric Fiberglass Mesh filter is specially developed and used for filtration, turbulence reduction and flow distribution improvement of non‐ferrous alloys especially the molten aluminum. The Aluminium Filtration cloth product is weaved from E-glass fiberglass yarn with resin coating. The filter fabric can be soft or rigid in roll, cut pieces or molded shapes.

Fiberglass filter screen is a filter mesh made of fiber mesh cloth with various materials by impregnating resin and other bonding materials. The function of the fiber filter is mainly to prevent macroscopic inclusions from entering the cavity, and to slightly absorb fine inclusions. Its main features are low price and easy to use. Fiber filter screens for foundry can be divided into fiber filter screens for molten steel, molten iron, and molten aluminum according to different application scopes. According to different shapes, they can be divided into sheet, round, spherical, cap-shaped, cylindrical filters, etc.. 

The materials used are different, and can be divided into filters such as alkali-free mesh cloth and high-silica mesh cloth. Alkali-free mesh is made of aluminoborosilicate glass, and its alkali metal oxide content is less than 0.8%. High silica fiberglass mesh is made of high-silica glass fiber woven mesh after post-processing. It has excellent characteristics such as high temperature resistance, high tensile strength, and good adsorption performance. It is widely used in the production of casting filter mesh, casting filter net. The product standard of high silica glass fiber mesh is that the silica content is not less than 96%. Fiber filter screens for cast aluminium generally use alkali-free mesh cloth, and fiber filter screens for cast iron and cast steel generally use high silica glass fiber mesh cloth.
 

Main material E-glass fiberglass
Working Temperature 800-900ºC
Color White/brown/black
Density(g/m2) 180-300
SiO2 content ≥58%
Hole size 0.8-3.0mm
Thickness 0.35-0.6mm
Width per roll 0.93m/1.0m  ± 1cm
Length per roll 100m/150m/200m

 

 

Our Advantages

Product Information

Company Profile

Refractoriness (℃): 800-900 Degree C
Feature: Foundry Molten Metal Filtration
Type: Refractory Material
Samples:
US$ 0.5/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

cast aluminium

How does the cost of cast aluminium compare to other metals like steel or copper?

The cost of cast aluminium can vary compared to other metals such as steel or copper. Here’s a detailed explanation:

The cost of cast aluminium is influenced by several factors, including the availability and abundance of aluminium raw materials, production processes, market demand, and the specific alloy used. In general, aluminium is considered a relatively affordable metal compared to copper but may be more expensive than certain types of steel.

Here’s a comparison of the cost factors for cast aluminium, steel, and copper:

  • Raw Material Cost:
  • The cost of raw materials plays a significant role in determining the overall cost of a metal. Aluminium is derived from bauxite ore, which is widely available and relatively abundant. This availability helps keep the raw material cost of aluminium comparatively lower than that of copper, which is obtained from mining and may have limited reserves. Steel is primarily made from iron ore, which is also abundant, resulting in a generally lower raw material cost compared to both aluminium and copper.

  • Production Processes:
  • The production processes involved in producing cast aluminium, steel, and copper also impact their respective costs. The production of cast aluminium involves processes such as melting, casting, and finishing, which can be energy-intensive. Steel production involves iron ore extraction, refining, and subsequent processing, including casting or forming. Copper production requires mining, smelting, and refining processes. The complexity and energy requirements of these processes can affect the overall cost of the respective metals.

  • Market Demand and Supply:
  • The demand and supply dynamics of the metal market can influence the cost of cast aluminium, steel, and copper. Fluctuations in global demand, trade policies, geopolitical factors, and market competition can impact the prices of these metals. The market demand for aluminium, steel, and copper in various industries, such as automotive, construction, and electronics, can also affect their relative costs.

  • Alloy Composition:
  • The specific alloy composition used in cast aluminium can influence its cost. Different alloying elements and their concentrations can affect the availability and cost of the alloy. For example, certain aluminium alloys with rare or specialized elements may be more expensive compared to standard aluminium alloys. Steel and copper also have various alloy compositions available, and the cost can vary depending on the specific alloy used.

  • Product Form and Complexity:
  • The cost of cast aluminium, steel, and copper can also depend on the form and complexity of the final product. For example, highly intricate or customized cast aluminium parts may require additional processing steps, which can increase the overall cost. Similarly, complex steel or copper components may involve specialized manufacturing techniques that affect their cost.

It’s important to note that the cost of cast aluminium, steel, and copper can vary over time due to market conditions, including fluctuations in raw material prices, energy costs, and other economic factors. Additionally, regional factors and local market conditions can also influence the relative cost of these metals.

In summary, the cost of cast aluminium can vary compared to other metals like steel or copper. While aluminium is generally considered more affordable than copper, the cost comparison with steel depends on factors such as raw material availability, production processes, market demand, and the specific alloy composition used. These factors, along with product form and complexity, contribute to the overall cost of each metal.

cast aluminium

How does cast aluminium perform in high-temperature applications?

Cast aluminium can perform well in high-temperature applications, but its performance is influenced by several factors. Here’s a detailed explanation:

Aluminium has a relatively low melting point compared to other metals, which can lead to concerns about its performance in high-temperature environments. However, cast aluminium can still be suitable for many high-temperature applications due to its unique properties:

  • High Thermal Conductivity:
  • Aluminium has excellent thermal conductivity, meaning it can efficiently transfer heat away from the high-temperature areas. This property allows cast aluminium to dissipate heat quickly, reducing the risk of overheating and maintaining dimensional stability.

  • Lightweight:
  • Cast aluminium is lightweight compared to many other metals. This characteristic is advantageous in high-temperature applications where weight reduction is desirable, as it can help improve energy efficiency and ease of handling.

  • Oxide Layer Formation:
  • Aluminium forms a natural oxide layer when exposed to air, which provides a degree of protection against corrosion and oxidation at high temperatures. This oxide layer acts as a barrier between the metal and the surrounding environment, helping to maintain the integrity of the cast aluminium part.

  • Alloy Selection:
  • The choice of aluminium alloy is critical in high-temperature applications. Different alloy compositions can offer enhanced heat resistance, improved mechanical properties at elevated temperatures, and better overall performance. For example, aluminium-silicon alloys, such as A356 or A413, exhibit good high-temperature strength and stability.

  • Heat Treatment:
  • Applying heat treatment processes to cast aluminium can further enhance its high-temperature performance. Heat treatment can refine the microstructure, improve mechanical properties, and increase the material’s resistance to thermal fatigue and creep.

  • Design Considerations:
  • Proper design considerations, such as incorporating appropriate wall thickness, heat sinks, or insulation, can help manage high temperatures effectively. By optimizing the design, cast aluminium parts can withstand and function reliably in demanding thermal conditions.

Despite its favorable properties, there are limitations to consider when using cast aluminium in high-temperature applications:

  • Aluminium has a lower melting point compared to other metals, so it may not be suitable for extremely high-temperature environments where materials with higher melting points, such as refractory metals or ceramics, are preferred.
  • Excessive exposure to high temperatures can cause gradual softening and deformation of cast aluminium parts, leading to a decrease in mechanical strength.
  • Thermal expansion and contraction of cast aluminium can affect dimensional stability, especially in applications with significant temperature fluctuations. Proper allowances and design considerations are necessary to accommodate these thermal changes.

Overall, cast aluminium can perform well in many high-temperature applications, thanks to its thermal conductivity, lightweight nature, oxide layer formation, and suitable alloy selection. By considering the specific requirements of the application and implementing appropriate design and material considerations, cast aluminium can provide reliable and cost-effective solutions for high-temperature environments.

cast aluminium

What are the advantages of using cast aluminium in manufacturing?

Using cast aluminium in manufacturing offers several advantages. Here’s a detailed explanation:

  • Lightweight:
  • Cast aluminium is lightweight compared to other metals, such as steel or iron. This property makes it an ideal choice for applications where weight reduction is crucial, such as in the automotive and aerospace industries. The use of cast aluminium components can contribute to improved fuel efficiency, increased payload capacity, and enhanced overall performance.

  • Strength-to-Weight Ratio:
  • Although cast aluminium is lightweight, it exhibits excellent strength-to-weight ratio. It provides sufficient structural strength and rigidity for many applications while keeping weight to a minimum. This property makes it suitable for applications requiring strength and durability, such as in the construction of machinery, vehicles, and structural components.

  • Corrosion Resistance:
  • Aluminium naturally forms a protective oxide layer on its surface, which provides inherent corrosion resistance. This oxide layer helps prevent rusting and corrosion, making cast aluminium components suitable for outdoor or corrosive environments. Additionally, aluminium can be further enhanced with coatings or finishes to improve its corrosion resistance and prolong its lifespan.

  • Malleability and Versatility:
  • Cast aluminium is highly malleable, allowing it to be easily shaped and formed into complex designs and intricate details. This versatility opens up a wide range of possibilities for manufacturing intricate components, decorative elements, and custom designs. Cast aluminium can be used to create aesthetically pleasing and functional products across various industries.

  • Excellent Thermal Conductivity:
  • Aluminium has excellent thermal conductivity, meaning it efficiently transfers heat. This property makes cast aluminium components suitable for applications where heat dissipation is critical, such as in heat sinks, cooling systems, or electronic enclosures. The high thermal conductivity of aluminium helps dissipate heat and maintain optimal operating temperatures.

  • Recyclability:
  • Aluminium is highly recyclable without losing its inherent properties. Recycling cast aluminium requires significantly less energy compared to primary aluminium production. The recyclability of cast aluminium makes it a sustainable choice, reducing the demand for primary aluminium and minimizing environmental impact.

  • Cost-Effectiveness:
  • Cast aluminium manufacturing processes are often cost-effective compared to other metal manufacturing methods. The relatively low melting point of aluminium reduces energy consumption during casting, and the lightweight nature of aluminium reduces transportation costs. Additionally, the recyclability of aluminium contributes to cost savings in the long run.

These advantages make cast aluminium a popular choice in various industries, including automotive, aerospace, construction, electronics, and consumer goods. However, it is important to consider specific application requirements, such as load-bearing capacity, temperature resistance, and surface finish, to determine the suitability of cast aluminium for a particular manufacturing project.

China Best Sales Foundry Material Melt Aluminum Filtration 14X14mesh Shell Mold Casting Filter Alloy Wheel  China Best Sales Foundry Material Melt Aluminum Filtration 14X14mesh Shell Mold Casting Filter Alloy Wheel
editor by CX 2023-12-04