Product Description

1. Mould Description

Product name Aluminum Alloy Hardware Die-Casting Molds
Mould Material H13, DIEVAR,SKD61, 8407, 8418, 1.2343,1.2344,1.2367,3Cr2W8V, 4Cr5MoSiV, W400, DAC55, DH-31, etc
Casting Alloy Aluminum, Magnesium
Cavity Qty Single Cavity, Multiple Cavity or Unit Cavity
Tonnage 200T-4400T
Treatment Heat Treatment, Nitriding, Polishing etc.
Mold Life 50,000 to 300,000 depend on products.
Applications 1. Automobile and motorcycle parts;
2. Telecom Parts;
3. Electrical appliance parts;
4. Lights & lamps parts;
5. Industrial hardware and Machine Sparepart;
6. Household Appliance parts;
7. Medical Instrument parts;
Lead Time 30-50 days
Special request According to customer’s request

2. Our advantages:

1) Big group with enough production capacity to be sure short lead time;
2) Around 20 years industry experience enable to control cost well, have cost advatage;
3) 5S refined management system to be sure well management ang high effeciency;
4) Inhouse rigorious quality control system & outside ISO/TS16949:2009 to be sure high quality; 
5) To use high quality materials imported from the first grade company to be sure material good quality;
6) High precision processing by high precision machine and skilled worker enable to achieve strict tolerance;

HangZhou SUN HUA PLASTIC METAL LTD

At The National Hardware Show
 

HangZhou SunHua Company, a leading player in the plastic and hardware industry, made a significant impact at the 2571 American National Hardware Show (NHS). The company showcased its innovative products and cutting-edge technologies, solidifying its reputation as a top-tier exhibitor in the global market.

Strength:
1. We are a die caster specialized in OEM die casting parts production from model designing,prototype build, tooling build and mass production since its founding from 1997.   

2. Top brand customer cooperation, such as BOSCH, TTI, and BYD etc.

3. Equipment includes CNC, EDM, grinding machine, die casting machine (from 88 ton to 2500 ton).

4. Dedicated and integrated solutions for your products with the best price.
Expertised Tooling Making
6. As-cast Quality Control
7. Precision CNC machining
8. Measurement Correlation
9. Production PlHangZhou and Management
10. Project Management and Scheduled Delivery
11. Providing good after-sale service, if the products have any quality issues.

Payment
We accept payment by T/T, PayPal.

FAQ

Q: What do I need for offering a quote?

A: Please offer us 2D or 3D drawings (with material, dimension, tolerance, surface treatment and another technical requirement, etc.), quantity, application, or samples. Then we will quote the best price within 24h.

 

Q: What is your MOQ?
 

A: MOQ depends on our client’s needs, besides, we welcome trial orders before mass production.

 

Q: What is the production cycle?

A: It varies a lot depending on product dimension, technical requirements, and quantity. We always try to meet customers’ requirements by adjusting our workshop schedule.

 

Q: What kind of payment terms do you accept?

A.: T/T,  PayPal.

 

Q: Is it possible to know how is my product going on without visiting your company?

A: We will offer a detailed production schedule and send weekly reports with digital pictures and videos which show the machining progress.

 

Q: If you make poor quality goods, will you refund our fund?

A: We make products according to drawings or samples strictly until they reach your 100% satisfaction. And actually we won’t take a chance to do poor quality products. We are proud of keeping the spirit of good quality.

 

For more questions, please send an inquiry or e-mail or call us! Thanks!

View More

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: 5 Years
Application: Car, Household Appliances, Electronic, Hardware
Material: Aluminium
Samples:
US$ 1.8/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

cast aluminium

What are the latest technological advancements in cast aluminium production?

Technological advancements in cast aluminium production have been driven by the need for improved efficiency, quality, and sustainability. Here’s a detailed explanation:

1. Advanced Simulation and Modeling: The use of advanced simulation and modeling techniques has significantly enhanced the design and optimization of cast aluminium components. Computer-aided engineering (CAE) tools, such as finite element analysis (FEA) and computational fluid dynamics (CFD), allow for virtual testing and prediction of casting defects, solidification behavior, and flow patterns. These tools enable engineers to optimize designs, reduce trial-and-error iterations, and improve the overall casting process.

2. 3D Printing and Additive Manufacturing: Additive manufacturing, including 3D printing, is increasingly being explored as a complementary technology for cast aluminium production. 3D printing can be used to create complex sand molds and cores with intricate geometries, eliminating the need for traditional tooling. This approach offers design flexibility, reduces lead times, and enables the production of customized and low-volume cast aluminium parts.

3. Improved Mold Materials: The development of advanced mold materials has contributed to more efficient and higher-quality cast aluminium production. Innovative materials, such as ceramic-based coatings and refractory materials, offer improved thermal stability, reduced mold degradation, and enhanced surface finish. These advancements help minimize casting defects, increase mold lifespan, and improve overall productivity.

4. Automated Casting Processes: Automation and robotics are being increasingly integrated into cast aluminium production processes. Automated systems for mold handling, pouring, and post-casting operations enhance productivity, reduce labor costs, and improve consistency. Robotic systems can perform tasks such as mold spraying, mold manipulation, and part extraction, ensuring precision and reducing the risk of human error.

5. Advanced Melting and Casting Technologies: Newer melting and casting technologies have emerged to enhance the efficiency and quality of cast aluminium production. For instance, electromagnetic stirring systems can improve melt homogeneity and reduce impurities. Vacuum-assisted and low-pressure casting techniques help minimize gas porosity and improve casting integrity. These technologies contribute to better mechanical properties, reduced scrap rates, and enhanced process control.

6. Real-Time Monitoring and Control: The integration of real-time monitoring and control systems allows for better process visibility and optimization in cast aluminium production. Sensors and data analytics enable the collection and analysis of critical process parameters, such as temperature, pressure, and flow rate. This data can be used to detect anomalies, optimize process parameters, and ensure consistent quality throughout production.

7. Energy Efficiency and Sustainability: The focus on energy efficiency and sustainability in cast aluminium production has led to advancements in process optimization and resource utilization. Improved insulation materials, energy recovery systems, and optimized process parameters help reduce energy consumption and environmental impact. Recycling and reusing aluminium scrap and waste also contribute to the sustainability of cast aluminium production.

8. Alloy Development: Ongoing research and development efforts are focused on the creation of new aluminium alloys with improved properties and casting characteristics. These alloys aim to provide enhanced mechanical strength, corrosion resistance, and thermal properties while maintaining good castability. Alloy development enables the production of cast aluminium components tailored to specific applications and industry needs.

These technological advancements in cast aluminium production are continually evolving, driven by research, innovation, and the growing demand for high-performance and sustainable manufacturing solutions.

cast aluminium

What are the tolerances and accuracies achievable with cast aluminium parts?

The achievable tolerances and accuracies of cast aluminium parts can vary depending on various factors, including the casting process, part design, size, complexity, and the specific requirements of the application. Here’s a detailed explanation:

Cast aluminium parts are manufactured through the casting process, which involves pouring molten aluminium into a mold and allowing it to solidify. This process can introduce certain limitations in terms of dimensional accuracy and tolerances compared to other manufacturing methods like machining. However, advancements in casting techniques and process controls have significantly improved the precision and quality of cast aluminium parts.

The achievable tolerances and accuracies of cast aluminium parts typically fall within a range based on industry standards and practical considerations. Here are some key factors to consider:

  • Casting Method:
  • The casting method employed can impact the achievable tolerances. Processes like sand casting, investment casting, and die casting can have different inherent limitations and capabilities in terms of dimensional accuracy. For example, die casting generally offers higher precision and tighter tolerances compared to sand casting.

  • Part Design and Complexity:
  • The complexity of the part geometry and design features can affect the achievable tolerances. Parts with intricate details, thin walls, undercuts, or internal cavities may pose challenges in maintaining tight tolerances. Simplifying the design or incorporating additional post-casting machining operations can help achieve tighter tolerances.

  • Size and Dimensions:
  • The size and dimensions of the cast aluminium part can influence the achievable tolerances. Larger parts may have slightly looser tolerances due to the potential for thermal expansion and contraction during the solidification process. Smaller parts generally have higher precision and tighter tolerances.

  • Surface Finish and Machining:
  • Depending on the application requirements, cast aluminium parts may undergo post-casting machining operations to achieve tighter tolerances and improve surface finish. Machining processes like milling, turning, and grinding can refine the dimensions and tolerances to meet specific accuracy requirements.

  • Industry Standards and Specifications:
  • Various industries have established standards and specifications that define the acceptable tolerances for different types of cast aluminium parts. These standards provide guidelines and reference values for dimensional accuracy based on the intended application and functional requirements.

It is important to note that the achievable tolerances and accuracies with cast aluminium parts may vary from one manufacturer to another or even within different production runs. Close collaboration between the design engineers, casting experts, and manufacturers is crucial to ensure that the desired tolerances can be achieved while considering the practical limitations and cost-effectiveness.

Overall, while cast aluminium parts may not offer the same level of precision as fully machined parts, they can still meet a wide range of dimensional requirements and functional needs. The selection of appropriate casting methods, design considerations, and post-casting processes can help achieve the desired tolerances and accuracies for cast aluminium parts in most applications.

cast aluminium

What are the advantages of using cast aluminium in manufacturing?

Using cast aluminium in manufacturing offers several advantages. Here’s a detailed explanation:

  • Lightweight:
  • Cast aluminium is lightweight compared to other metals, such as steel or iron. This property makes it an ideal choice for applications where weight reduction is crucial, such as in the automotive and aerospace industries. The use of cast aluminium components can contribute to improved fuel efficiency, increased payload capacity, and enhanced overall performance.

  • Strength-to-Weight Ratio:
  • Although cast aluminium is lightweight, it exhibits excellent strength-to-weight ratio. It provides sufficient structural strength and rigidity for many applications while keeping weight to a minimum. This property makes it suitable for applications requiring strength and durability, such as in the construction of machinery, vehicles, and structural components.

  • Corrosion Resistance:
  • Aluminium naturally forms a protective oxide layer on its surface, which provides inherent corrosion resistance. This oxide layer helps prevent rusting and corrosion, making cast aluminium components suitable for outdoor or corrosive environments. Additionally, aluminium can be further enhanced with coatings or finishes to improve its corrosion resistance and prolong its lifespan.

  • Malleability and Versatility:
  • Cast aluminium is highly malleable, allowing it to be easily shaped and formed into complex designs and intricate details. This versatility opens up a wide range of possibilities for manufacturing intricate components, decorative elements, and custom designs. Cast aluminium can be used to create aesthetically pleasing and functional products across various industries.

  • Excellent Thermal Conductivity:
  • Aluminium has excellent thermal conductivity, meaning it efficiently transfers heat. This property makes cast aluminium components suitable for applications where heat dissipation is critical, such as in heat sinks, cooling systems, or electronic enclosures. The high thermal conductivity of aluminium helps dissipate heat and maintain optimal operating temperatures.

  • Recyclability:
  • Aluminium is highly recyclable without losing its inherent properties. Recycling cast aluminium requires significantly less energy compared to primary aluminium production. The recyclability of cast aluminium makes it a sustainable choice, reducing the demand for primary aluminium and minimizing environmental impact.

  • Cost-Effectiveness:
  • Cast aluminium manufacturing processes are often cost-effective compared to other metal manufacturing methods. The relatively low melting point of aluminium reduces energy consumption during casting, and the lightweight nature of aluminium reduces transportation costs. Additionally, the recyclability of aluminium contributes to cost savings in the long run.

These advantages make cast aluminium a popular choice in various industries, including automotive, aerospace, construction, electronics, and consumer goods. However, it is important to consider specific application requirements, such as load-bearing capacity, temperature resistance, and surface finish, to determine the suitability of cast aluminium for a particular manufacturing project.

China Custom Efficient Manufacturer of Aluminum Alloy Hardware Die-Casting Molds  China Custom Efficient Manufacturer of Aluminum Alloy Hardware Die-Casting Molds
editor by Dream 2024-04-19