Product Description

Product Description

Product Description
Pinch Valve / Pipe Clamping Valve 
Features: 
Design & Manufacture: Q/JBGN02, GB 12239-89 
Face to Face Dimension: Q/JBGN02, GB12221-89, QY 2000-2 
Flanged Dimension: JB78, GB4126, ANSI B16.5, DIN3202, JIS 
Inspect & Test: BS 6755, GB/T13927-92 
Operation: Handwheel, Pneumatic & Electric 
Size Ranges: 1″ to 14″NB 
Pressure Rating: PN6, PN10, PN16, ANSI 125, ANSI 150. 

Standard Materials Construction: 
Body/Bonnet: Cast Iron, Ductile Iron, Cast Steel, Stainless Steel and Duplex 
Sleeve: Rubber/NBR 
Stem: Cast Brass or Carbon Steel 
Bar: Carbon Steel 
Pressing Stem: Alum. Alloy 
Handwheel: Iron & Steel 
Bracket: Ductile Iron

DESIGN & MFT GB12239-89 ENDS CONNECTION R.F
MEDIUM WATER, OIL, GAS INSPECT & TEST GB12239-89
F-F DIMENSION GB12239-89 FLANGED DIMENSION ASME B16.5
MARKING FIRE SAFE DESIGN
PAINTING TBA LOGO HENGGONG

Detailed Photos

Hot sales Products

Our Advantages

 

Company Profile

 

Packaging & Shipping

 

FAQ

Q: Are you a manufacturer or a distributor?
A: We are a valve manufacturer with 25 years of experience in valve development, design, production and sales. Won the top 10 valve manufacturers in China.

Q:Is it a finished product or can be customized?
A:We customize the professional valves you need according to your technical requirements, drawings, parameters, etc.

Q:What is your price term
A:Ex-factory ,FOB

Q:what is the minimum order quantity
A:Small diameter valves is 10pcs/model,large diameter valves is 1pcs/model, if you have special requirements, please communicate with us.

Q:What is the term of payment?
A:T/T or L/C Also,we accept the order to be placed via Made-in-china

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Products: Pneumatic Cast Iron Pinch Valve
Warranty: 1year
Payment: Tt/LC/Cash/Credit Card
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

cast aluminium

Are there any limitations to the shapes and sizes that can be achieved with cast aluminium?

When it comes to casting aluminium, there are certain limitations to consider regarding the shapes and sizes that can be achieved. Here’s a detailed explanation:

1. Complexity of Shapes: While cast aluminium allows for the production of intricate and complex shapes, there are limits to the level of complexity that can be achieved compared to other manufacturing processes such as machining. The use of cores and slides can enable the creation of undercuts and internal features, but excessively complex geometries may pose challenges during the casting process, leading to increased production time and costs.

2. Wall Thickness: Casting aluminium is well-suited for producing parts with varying wall thicknesses. However, excessively thin sections or abrupt transitions between thick and thin sections can result in casting defects such as porosity, shrinkage, and inadequate mechanical strength. Design guidelines should be followed to ensure proper wall thickness and avoid potential issues.

3. Size and Weight: Cast aluminium can be used to produce both small and large components, ranging from a few grams to several tons. However, casting larger and heavier parts may require specialized equipment and facilities to accommodate the size and weight of the casting. Additionally, handling and transportation considerations must be taken into account for larger castings.

4. Dimensional Accuracy: Achieving precise dimensional accuracy can be more challenging with cast aluminium compared to other manufacturing processes like machining. Shrinkage and distortion during the cooling and solidification process can result in slight variations in the final dimensions of the casting. Design tolerances and post-casting machining processes may be necessary to achieve the desired dimensional accuracy.

5. Surface Finish: Cast aluminium surfaces may exhibit a textured or slightly rough finish compared to the smooth finish achieved through machining processes. The surface finish of cast aluminium parts can be influenced by factors such as the quality of the mold, the casting process, and the material used. Additional post-casting processes such as grinding, polishing, or coating may be required to achieve the desired surface finish.

6. Weight Distribution: The distribution of weight within a cast aluminium part can affect its mechanical properties, stability, and performance. Uneven weight distribution or localized thick sections can lead to imbalance, reduced structural integrity, and potential issues during assembly or use. Proper design considerations should be given to weight distribution to ensure optimal performance and functionality.

7. Machining Allowances: Cast aluminium parts often require machining operations to achieve the final dimensions, features, and surface finish. Designing with appropriate machining allowances is necessary to account for the expected dimensional variations during the casting process. Machining allowances should be included in the design to allow for post-casting machining operations and achieve the desired specifications.

Despite these limitations, cast aluminium remains a versatile manufacturing method capable of producing a wide range of shapes and sizes. By understanding and working within the constraints of the casting process, engineers and designers can leverage the benefits of cast aluminium while optimizing the design for manufacturability and functionality.

cast aluminium

Are there any corrosion-resistant grades of cast aluminium?

Yes, there are corrosion-resistant grades of cast aluminium that are specifically formulated to have enhanced resistance against corrosion. Here’s a detailed explanation:

Cast aluminium alloys are typically composed of aluminium as the primary element and various alloying elements added to enhance specific properties. The choice of alloying elements and their composition can significantly influence the corrosion resistance of cast aluminium. Some commonly used corrosion-resistant grades of cast aluminium include:

  • Aluminium-Silicon Alloys:
  • Aluminium-silicon alloys, such as the popular A356 and A413 grades, are widely used in casting applications due to their excellent corrosion resistance. These alloys contain silicon as the primary alloying element, which forms a protective oxide layer on the surface of the aluminium, enhancing its resistance to corrosion caused by exposure to moisture, salts, and other corrosive elements.

  • Aluminium-Magnesium Alloys:
  • Aluminium-magnesium alloys, such as the 5000 series (e.g., 5052 and 5083), are known for their good corrosion resistance. The addition of magnesium provides a self-healing property to the aluminium, as the magnesium reacts with oxygen to form a protective magnesium oxide layer. This oxide layer helps prevent further corrosion and degradation of the aluminium surface.

  • Aluminium-Zinc Alloys:
  • Aluminium-zinc alloys, such as the 7000 series (e.g., 7075), exhibit high strength and good corrosion resistance. The addition of zinc enhances the corrosion resistance by forming a protective zinc oxide layer on the surface of the aluminium. These alloys are commonly used in applications where both strength and corrosion resistance are critical, such as in aerospace and military industries.

  • Aluminium-Copper Alloys:
  • Aluminium-copper alloys, such as the 2000 series (e.g., 2024), are known for their high strength and moderate corrosion resistance. The addition of copper improves the overall strength and mechanical properties of the aluminium, while also providing some degree of corrosion resistance. However, these alloys may require protective coatings or surface treatments for enhanced corrosion protection in more aggressive environments.

It’s important to note that while these corrosion-resistant grades of cast aluminium offer improved resistance to corrosion, they may still require proper maintenance and care to ensure their long-term performance. Factors such as exposure to harsh environments, temperature variations, and the presence of corrosive agents can still affect the corrosion resistance of cast aluminium, albeit to a lesser extent compared to non-resistant grades.

When selecting a specific grade of cast aluminium for a particular application, it is essential to consider the environmental conditions, intended use, and required level of corrosion resistance. Consulting with material suppliers or experts in the field can provide valuable guidance in choosing the most suitable corrosion-resistant grade of cast aluminium for a given application.

cast aluminium

Can cast aluminium be recycled, and how is it done?

Yes, cast aluminium can be recycled, and the recycling process involves several steps. Here’s a detailed explanation:

Recycling cast aluminium helps conserve resources, reduce energy consumption, and minimize waste. The recycling process typically follows these steps:

  1. Collection:
  2. Cast aluminium scrap is collected from various sources, including discarded products, manufacturing waste, and post-consumer items. This scrap is then transported to recycling facilities for processing.

  3. Sorting:
  4. At the recycling facility, the collected cast aluminium scrap is sorted based on its alloy composition. Different aluminium alloys may have varying chemical compositions and properties, so sorting helps ensure that the recycled material is used appropriately.

  5. Shredding and Melting:
  6. The sorted cast aluminium scrap is shredded into smaller pieces or chips to increase its surface area. Shredding facilitates the melting process and allows for efficient heat transfer during recycling. The shredded aluminium is then loaded into a melting furnace.

  7. Melting and Purification:
  8. In the melting furnace, the shredded cast aluminium is heated to high temperatures, typically around 660°C (1220°F), causing it to melt. During the melting process, impurities and contaminants are removed through various purification techniques. This helps ensure that the recycled aluminium meets the required quality standards.

  9. Casting:
  10. Once the molten aluminium is purified, it is cast into ingots or other desired forms. The molten aluminium is poured into molds and allowed to cool and solidify, forming new aluminium products or raw material for further processing.

  11. Fabrication:
  12. The cast aluminium ingots or recycled aluminium sheets can be further processed and fabricated into new products. This may involve techniques such as extrusion, rolling, forging, or machining to shape the recycled aluminium into desired forms.

  13. Reuse or Manufacturing:
  14. The recycled cast aluminium can be used for various applications. It can be incorporated into new products, such as automotive components, building materials, packaging, or consumer goods. Alternatively, it can be sold to manufacturers who require aluminium as a raw material for their production processes.

  15. Continued Recycling:
  16. Aluminium has the advantage of being infinitely recyclable without any loss in quality. Recycled cast aluminium can be recycled again and again, allowing for a sustainable and circular material flow.

The recycling of cast aluminium helps conserve natural resources, reduces the need for primary aluminium production, and reduces the environmental impact associated with mining and refining raw aluminium. It also saves energy, as recycling aluminium requires significantly less energy compared to producing aluminium from ore.

China Good quality DIN/API Aluminium/Cast Steel DN100 Flange Pinch Valve with Pneumatic Cylinder  China Good quality DIN/API Aluminium/Cast Steel DN100 Flange Pinch Valve with Pneumatic Cylinder
editor by Dream 2024-05-09