Product Description

Product name aluminum sliding glass door
Material Aluminum alloy+glass
Open type sliding
Dimension Can be customized
Profile Profile: different series;                                              
Colors: Silver, wood,gold,black,white coffee,gray ,customized
Glass option A:Single glass: 5,6,8,10, 12mm;
B:Double glazing:5mm+6/9/12/14/15/18/27a+5mm
Glass can be made 5/6/8/10/12mm
D:Tinted/reflect /tempered /insulating/frosted/low-e/radiation-shielding glass
D:Tinted/reflect /tempered /insulating/frosted/low-e/radiation-shielding glass
E:Green/Silver/Gray/ Tea/Miror/Blue/Gold Coating
Surface Treatment Powder coated ,anodizing ,electrophoresis, Heat transfer for wood grain,PVDF coating
Hardware HOPO,OEM,Chinese brand

FAQ  
1.How much price for the windows and doors ? We have different materials for the price. Depend on your sizes that will suggests which quality are suitable for you from our engineer team,
2.How can get the specifications information for the windows and doors?  Just send the products name or photos to us, our design team will send you the details of what you want immediately.
3.How can you get the shipping cost to your country? 1.Tell us what is your final products you want to purchase
2.Leave the consignee details to us
3.Confirm which day you want to ship it
For these three questions, our shipping team will get the price to you in one day.
4.How can you get the real projects case from us? Show what you building sites photo or 3D design photo.
We will send our cases to you what we did before 
5.When can delivery?  The delivery time is 7-10days/ 10-15days/ 15-25days. 
Depend on the quantity you order or how quick for your projects want to fix up.
We will do the decision for you  according your requests

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Surface Finishing: Finished
Glass Type: Tinted/Coated/Forsted/Lowe/Bulletproof
Certification: CE
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

cast aluminium

What design considerations are there when working with cast aluminium?

When working with cast aluminium, several design considerations should be taken into account to ensure successful and efficient manufacturing. Here’s a detailed explanation:

1. Wall Thickness: Maintaining uniform wall thickness is crucial in cast aluminium design. Thick sections can lead to slower solidification, increased porosity, and potential shrinkage defects. Conversely, excessively thin sections may result in poor mold filling and insufficient mechanical strength. Design guidelines should be followed to optimize wall thickness and ensure proper solidification during casting.

2. Corner Radii and Fillets: Incorporating generous corner radii and fillets in cast aluminium designs helps minimize stress concentration and prevent the formation of sharp edges. Smooth transitions between wall sections, ribs, and bosses improve the overall strength and integrity of the casting.

3. Draft Angles: Draft angles are necessary to facilitate the removal of the casting from the mold. Adequate draft angles allow for smooth ejection, reducing the risk of damage to the casting and ensuring consistent production. Typically, a minimum draft angle of 1-3 degrees per side is recommended for cast aluminium parts.

4. Rib Design: Ribs are often used to provide additional strength and rigidity to cast aluminium components. Designing ribs with proper thickness, height, and filleting helps prevent distortion and ensures effective heat dissipation during casting and subsequent use.

5. Undercuts and Core Pulls: Complex cast aluminium designs may require the use of cores or slides for creating undercuts or internal features. These features should be designed with care to allow for easy removal of the casting from the mold. Proper consideration of core placement, shape, and release mechanisms is essential to avoid casting defects and ensure smooth production.

6. Parting Line: The parting line is the interface where the two halves of the mold meet. It is important to carefully consider the location of the parting line to minimize the need for additional machining and to ensure good dimensional accuracy. The parting line should be strategically placed to avoid critical features and maintain the overall integrity of the casting.

7. Surface Finish and Texture: Cast aluminium parts often require specific surface finishes and textures for both functional and aesthetic purposes. Design considerations should be given to the desired surface finish, such as smoothness, textures, and the location of parting lines, to achieve the desired appearance and performance of the final product.

8. Material Selection: The selection of the appropriate aluminium alloy for the specific application is crucial. Different aluminium alloys have varying mechanical properties, corrosion resistance, and casting characteristics. Understanding the requirements of the part and selecting the suitable alloy will ensure optimal performance and cost-effectiveness.

9. Tolerances and Machining Allowances: Design tolerances and machining allowances should be carefully defined to accommodate the expected dimensional variations during casting and post-casting processes. It is essential to consider the shrinkage and distortion tendencies of cast aluminium and provide appropriate tolerances to achieve the desired fit and functionality of the final assembly.

10. Testing and Prototyping: Testing and prototyping are essential steps in the design process for cast aluminium parts. Physical prototypes and computer simulations can help identify potential issues, validate the design, and optimize the casting process before full-scale production. Performing thorough testing and evaluation ensures the final design meets the required performance and quality standards.

By considering these design considerations, engineers and designers can optimize the manufacturability, functionality, and performance of cast aluminium components. Collaboration between designers, casting experts, and manufacturers is often valuable to ensure the best outcomes in terms of cost, quality, and efficiency.

cast aluminium

Are there any corrosion-resistant grades of cast aluminium?

Yes, there are corrosion-resistant grades of cast aluminium that are specifically formulated to have enhanced resistance against corrosion. Here’s a detailed explanation:

Cast aluminium alloys are typically composed of aluminium as the primary element and various alloying elements added to enhance specific properties. The choice of alloying elements and their composition can significantly influence the corrosion resistance of cast aluminium. Some commonly used corrosion-resistant grades of cast aluminium include:

  • Aluminium-Silicon Alloys:
  • Aluminium-silicon alloys, such as the popular A356 and A413 grades, are widely used in casting applications due to their excellent corrosion resistance. These alloys contain silicon as the primary alloying element, which forms a protective oxide layer on the surface of the aluminium, enhancing its resistance to corrosion caused by exposure to moisture, salts, and other corrosive elements.

  • Aluminium-Magnesium Alloys:
  • Aluminium-magnesium alloys, such as the 5000 series (e.g., 5052 and 5083), are known for their good corrosion resistance. The addition of magnesium provides a self-healing property to the aluminium, as the magnesium reacts with oxygen to form a protective magnesium oxide layer. This oxide layer helps prevent further corrosion and degradation of the aluminium surface.

  • Aluminium-Zinc Alloys:
  • Aluminium-zinc alloys, such as the 7000 series (e.g., 7075), exhibit high strength and good corrosion resistance. The addition of zinc enhances the corrosion resistance by forming a protective zinc oxide layer on the surface of the aluminium. These alloys are commonly used in applications where both strength and corrosion resistance are critical, such as in aerospace and military industries.

  • Aluminium-Copper Alloys:
  • Aluminium-copper alloys, such as the 2000 series (e.g., 2024), are known for their high strength and moderate corrosion resistance. The addition of copper improves the overall strength and mechanical properties of the aluminium, while also providing some degree of corrosion resistance. However, these alloys may require protective coatings or surface treatments for enhanced corrosion protection in more aggressive environments.

It’s important to note that while these corrosion-resistant grades of cast aluminium offer improved resistance to corrosion, they may still require proper maintenance and care to ensure their long-term performance. Factors such as exposure to harsh environments, temperature variations, and the presence of corrosive agents can still affect the corrosion resistance of cast aluminium, albeit to a lesser extent compared to non-resistant grades.

When selecting a specific grade of cast aluminium for a particular application, it is essential to consider the environmental conditions, intended use, and required level of corrosion resistance. Consulting with material suppliers or experts in the field can provide valuable guidance in choosing the most suitable corrosion-resistant grade of cast aluminium for a given application.

cast aluminium

How does cast aluminium differ from wrought aluminium?

Cast aluminium and wrought aluminium are two different forms of aluminum that differ in their manufacturing processes and properties. Here’s a detailed explanation:

Manufacturing Process:

  • Cast Aluminium:
  • Cast aluminium is produced by pouring molten aluminium into a mold or die, allowing it to solidify and take the shape of the mold. This process is called casting. Cast aluminium components are typically created in large batches using specialized casting techniques such as sand casting, die casting, or investment casting.

  • Wrought Aluminium:
  • Wrought aluminium is produced through a series of mechanical processes, typically starting with the casting of ingots or billets. The ingots or billets are then subjected to various shaping processes, such as rolling, extrusion, forging, or drawing. These processes deform the aluminium material and shape it into the desired form, such as sheets, plates, bars, or profiles.

Mechanical Properties:

  • Cast Aluminium:
  • Cast aluminium has a coarse-grained microstructure due to the rapid solidification process during casting. This microstructure can result in lower mechanical strength and reduced ductility compared to wrought aluminium. However, cast aluminium can still exhibit sufficient strength and rigidity for many applications.

  • Wrought Aluminium:
  • Wrought aluminium has a refined and more uniform microstructure due to the mechanical processing it undergoes. This results in improved mechanical properties, including higher strength, better ductility, and enhanced toughness compared to cast aluminium. Wrought aluminium is often preferred for applications that require superior mechanical performance.

<strong.Surface Finish:

  • Cast Aluminium:
  • Cast aluminium surfaces typically have a textured or slightly rough appearance due to the nature of the casting process. The surface finish of cast aluminium can vary depending on the casting method used and the quality of the mold. Additional machining or surface treatments may be required to achieve a smoother or more polished finish.

  • Wrought Aluminium:
  • Wrought aluminium surfaces can achieve a smoother and more refined finish compared to cast aluminium. The mechanical processing involved in the production of wrought aluminium helps create a more uniform surface texture. Wrought aluminium can be further treated or finished to achieve various surface qualities, such as brushed, polished, or anodized finishes.

Application Suitability:

  • Cast Aluminium:
  • Cast aluminium is commonly used for applications that prioritize ease of manufacturing, complex shapes, or cost-efficiency. It is often found in automotive components, household appliances, decorative items, and low-stress structural applications.

  • Wrought Aluminium:
  • Wrought aluminium is preferred for applications that require superior mechanical properties, tight tolerances, or specific surface finishes. It is commonly used in aerospace components, high-strength structures, precision parts, and applications where formability and strength are critical.

It’s important to note that the choice between cast aluminium and wrought aluminium depends on the specific requirements of the application, considering factors such as mechanical performance, surface finish, complexity of the design, and cost considerations.

China Standard Cast Size Aluminum Lift Sliding Glass Door Customized House Glass Doors with Grill Design  China Standard Cast Size Aluminum Lift Sliding Glass Door Customized House Glass Doors with Grill Design
editor by CX 2024-03-27