Product Description

Customized Motor Aluminum Die Casting Auto Accessories Motorcycle Spare Machinery Part

Product Description

 

Material:  ADC-12
Cavity Number: 1
Process Technology: High pressure die casting
Product Dimensions:  Customized
Casting General Tolerance: Grade GB-CT4
Surface Finish:  Polishing, Vibratory deburring,Anodizing, Power Coating, Painting,etc
Flow Processes:  Die casting, Trimming, Polishing, vibratory deburring, Machining, Cleaning,Packing, Shipping
Control Measure: Incoming Material Test, First Article inspection, Routing inspection, Final item inspection,  and Outgoing quality control
Inspection Equipment:  CMM, Caliper, Plug Gage,Thread Gage,Tensile Tester,Roughness Meter,Spectrograph,Air Gage,Air Leak Test,Projector,Pneumatic Measuring Tool,etc.
Application: Auto Parts
Certificate: IATF16949:2016
Lead Time 30-35 days
Trade Term: FOB HangZhou

 

about us, please click the link:
company-HangZhou-Xihu (West Lake) Dis.-Bolang-Metal-Products-Factory.html

Certifications

 

 

Detailed Photos

 

 

 

Company Profile

BOLANG, established in 2001, specializes in manufacturing aluminum & zinc alloy die castings, serving automotive components, agricultural machinery parts, construction components, lighting accessories, and various precision machined parts industries.
The company possesses a highly qualified staff team. Technical engineers are with decades’ experience in die-casting techniques such as vacuum casting and squeezing pin technology.
In order to establish a steady production system, the company possesses die-casting equipment ranging from 280 tons to 1200 tons. To meet the quality control standards, the company is equipped with CMM, spectrometer, image measuring instrument, blue light scanner, magnifier, digital layer thickness gauge, leak tester, hardness tester, roughness tester, and electron microscope. The company also awarded certificate as IATF16949, ISO14001, ISO45001, etc.

About Malaysia Branch Factory

In order for US clients to reduce 25%-35% import tariff and save the cost, we set up a Malaysia branch factory – RONGKUN METAL PRODUCTS SDN BHD.
We equipped 3 die casting machines (280T, 400T, 630T) and 5 CNC, also CMM and other measurement equipment as well. We will manage to get the certificate of IATF16949, ISO14001 for this branch factory in early 2571.

 

FAQ

 

FAQ
Q1. When can I get the price?
A:  We usually quote within 2-3 days after we receive the RFQ or feedback within 2 days if any questions on prints need to be confirmed.
Q2. How long is the lead-time for mold?
A:  Usually it depends on the size and complexity of the mold. But normally, the lead time is 35-45days. 
Q3. I have no 3D drawing, how should I start the new project?
A:  You can supply us a sample, we will help work on establishing 3D model accordingly.
Q4. Before shipment, how to ensure the products quality?
A: We have strict development procedure, during samples development, we have capacity to produce according to PPA, after PSW approved.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Die Casting Machine Type: Cold Chamber Die Casting Machine
Die Casting Method: Precision Die Casting
Application: Auto Parts
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

cast aluminium

Can cast aluminium be welded, and if so, what techniques are used?

Yes, cast aluminium can be welded, but it requires specific techniques and considerations due to the unique characteristics of the material. Here’s a detailed explanation:

Cast aluminium is a commonly used material in various industries due to its lightweight, high strength-to-weight ratio, and good corrosion resistance. Welding cast aluminium can be challenging because it has different properties compared to wrought aluminium, primarily due to its microstructure and the presence of impurities and inclusions.

When welding cast aluminium, several important factors should be considered:

  • Preparation and Cleaning:
  • Prior to welding, thorough cleaning of the cast aluminium surfaces is crucial. Any contaminants, such as oils, dirt, or oxide layers, should be removed to ensure proper fusion and minimize the risk of defects in the weld.

  • Preheating:
  • Preheating the cast aluminium part can help reduce the thermal stresses and minimize the potential for cracking during welding. The preheating temperature and duration depend on factors such as the alloy type, part thickness, and welding method.

  • Welding Techniques:
  • Various welding techniques can be used for cast aluminium, including:

    • Tungsten Inert Gas (TIG) Welding: TIG welding is commonly used for welding cast aluminium. It involves the use of a non-consumable tungsten electrode to create an electric arc, and a shielding gas (typically argon) protects the weld area from atmospheric contamination. TIG welding allows precise control of the heat input and produces high-quality welds.
    • Metal Inert Gas (MIG) Welding: MIG welding, also known as Gas Metal Arc Welding (GMAW), can be used for cast aluminium. It utilizes a consumable electrode wire and an inert gas shield to protect the weld pool. MIG welding is faster than TIG welding but may require more expertise to achieve good results with cast aluminium.
    • Fusion Welding: In some cases, fusion welding techniques like oxyfuel gas welding or plasma arc welding may be suitable for specific cast aluminium applications. These processes involve the localized melting of the base metal to create the weld joint.
  • Filler Material:
  • The choice of filler material for welding cast aluminium is crucial. Generally, an aluminium-silicon alloy filler wire, such as 4043 or 5356, is used. These alloys have a similar composition to most cast aluminium grades and provide good fusion and mechanical properties.

  • Post-Weld Heat Treatment:
  • After welding, post-weld heat treatment (PWHT) may be necessary to relieve residual stresses and improve the mechanical properties of the weld. The specific PWHT requirements depend on factors such as the alloy composition, part thickness, and application.

  • Weld Quality and Testing:
  • Proper inspection and testing of the welds are essential to ensure their quality and integrity. Non-destructive testing methods, such as visual inspection, dye penetrant testing, or radiographic examination, can be employed to detect any weld defects or discontinuities.

It is important to note that welding cast aluminium can be more challenging compared to welding wrought aluminium due to the potential for casting defects, such as porosity or inclusions, which can affect the weld integrity. Therefore, it is advisable to work with experienced welders who have expertise in welding cast aluminium and understand the specific challenges associated with the material.

In summary, cast aluminium can be welded using techniques such as TIG welding, MIG welding, or fusion welding, provided proper preparation, cleaning, preheating, filler material selection, and post-weld heat treatment are considered. By following appropriate welding procedures and conducting thorough quality inspections, reliable and structurally sound welds can be achieved in cast aluminium parts.

cast aluminium

What are the tolerances and accuracies achievable with cast aluminium parts?

The achievable tolerances and accuracies of cast aluminium parts can vary depending on various factors, including the casting process, part design, size, complexity, and the specific requirements of the application. Here’s a detailed explanation:

Cast aluminium parts are manufactured through the casting process, which involves pouring molten aluminium into a mold and allowing it to solidify. This process can introduce certain limitations in terms of dimensional accuracy and tolerances compared to other manufacturing methods like machining. However, advancements in casting techniques and process controls have significantly improved the precision and quality of cast aluminium parts.

The achievable tolerances and accuracies of cast aluminium parts typically fall within a range based on industry standards and practical considerations. Here are some key factors to consider:

  • Casting Method:
  • The casting method employed can impact the achievable tolerances. Processes like sand casting, investment casting, and die casting can have different inherent limitations and capabilities in terms of dimensional accuracy. For example, die casting generally offers higher precision and tighter tolerances compared to sand casting.

  • Part Design and Complexity:
  • The complexity of the part geometry and design features can affect the achievable tolerances. Parts with intricate details, thin walls, undercuts, or internal cavities may pose challenges in maintaining tight tolerances. Simplifying the design or incorporating additional post-casting machining operations can help achieve tighter tolerances.

  • Size and Dimensions:
  • The size and dimensions of the cast aluminium part can influence the achievable tolerances. Larger parts may have slightly looser tolerances due to the potential for thermal expansion and contraction during the solidification process. Smaller parts generally have higher precision and tighter tolerances.

  • Surface Finish and Machining:
  • Depending on the application requirements, cast aluminium parts may undergo post-casting machining operations to achieve tighter tolerances and improve surface finish. Machining processes like milling, turning, and grinding can refine the dimensions and tolerances to meet specific accuracy requirements.

  • Industry Standards and Specifications:
  • Various industries have established standards and specifications that define the acceptable tolerances for different types of cast aluminium parts. These standards provide guidelines and reference values for dimensional accuracy based on the intended application and functional requirements.

It is important to note that the achievable tolerances and accuracies with cast aluminium parts may vary from one manufacturer to another or even within different production runs. Close collaboration between the design engineers, casting experts, and manufacturers is crucial to ensure that the desired tolerances can be achieved while considering the practical limitations and cost-effectiveness.

Overall, while cast aluminium parts may not offer the same level of precision as fully machined parts, they can still meet a wide range of dimensional requirements and functional needs. The selection of appropriate casting methods, design considerations, and post-casting processes can help achieve the desired tolerances and accuracies for cast aluminium parts in most applications.

cast aluminium

Can cast aluminium be recycled, and how is it done?

Yes, cast aluminium can be recycled, and the recycling process involves several steps. Here’s a detailed explanation:

Recycling cast aluminium helps conserve resources, reduce energy consumption, and minimize waste. The recycling process typically follows these steps:

  1. Collection:
  2. Cast aluminium scrap is collected from various sources, including discarded products, manufacturing waste, and post-consumer items. This scrap is then transported to recycling facilities for processing.

  3. Sorting:
  4. At the recycling facility, the collected cast aluminium scrap is sorted based on its alloy composition. Different aluminium alloys may have varying chemical compositions and properties, so sorting helps ensure that the recycled material is used appropriately.

  5. Shredding and Melting:
  6. The sorted cast aluminium scrap is shredded into smaller pieces or chips to increase its surface area. Shredding facilitates the melting process and allows for efficient heat transfer during recycling. The shredded aluminium is then loaded into a melting furnace.

  7. Melting and Purification:
  8. In the melting furnace, the shredded cast aluminium is heated to high temperatures, typically around 660°C (1220°F), causing it to melt. During the melting process, impurities and contaminants are removed through various purification techniques. This helps ensure that the recycled aluminium meets the required quality standards.

  9. Casting:
  10. Once the molten aluminium is purified, it is cast into ingots or other desired forms. The molten aluminium is poured into molds and allowed to cool and solidify, forming new aluminium products or raw material for further processing.

  11. Fabrication:
  12. The cast aluminium ingots or recycled aluminium sheets can be further processed and fabricated into new products. This may involve techniques such as extrusion, rolling, forging, or machining to shape the recycled aluminium into desired forms.

  13. Reuse or Manufacturing:
  14. The recycled cast aluminium can be used for various applications. It can be incorporated into new products, such as automotive components, building materials, packaging, or consumer goods. Alternatively, it can be sold to manufacturers who require aluminium as a raw material for their production processes.

  15. Continued Recycling:
  16. Aluminium has the advantage of being infinitely recyclable without any loss in quality. Recycled cast aluminium can be recycled again and again, allowing for a sustainable and circular material flow.

The recycling of cast aluminium helps conserve natural resources, reduces the need for primary aluminium production, and reduces the environmental impact associated with mining and refining raw aluminium. It also saves energy, as recycling aluminium requires significantly less energy compared to producing aluminium from ore.

China Standard Customized Motor Aluminum Die Casting Auto Accessories Motorcycle Spare Machinery Part  China Standard Customized Motor Aluminum Die Casting Auto Accessories Motorcycle Spare Machinery Part
editor by Dream 2024-05-10